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Abstract

A new molecular-based approach is employed to derive balance relations for multiphase flow through
porous media. Criteria are prescribed which identify, instant by instant, precisely which molecules are
considered to reside in each bulk, interfacial, and contact line phase. Continuum balance relations for mass,
momentum and energy are established for each of these phases (which consist of ever-changing molecular
populations) at the scale of representative elementary volumes (REVs). All fields in these balance relations
are related to space–time averages of molecular quantities, and complete account is taken of molecular
transport within and between phases. This is a one-step procedure, as opposed to the two-step approach
commonly used in averaging (first going from molecular scale to an intermediate scale, at which common
lines, interfaces and pore geometry are manifest, and thence to a macro/REV-scale). In this way consid-
eration of ‘excess’ quantities is avoided. Simplifications and constitutive considerations are discussed.
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Multiphase flows through porous media play an important role in many environmental and
engineering contexts. It is well known that such flows are highly sensitive to capillary effects

International Journal of Multiphase Flow 28 (2002) 1091–1123
www.elsevier.com/locate/ijmulflow

*
Corresponding author. Tel.: +141-552-4400; fax: +141-552-8657.

E-mail address: caas48@strath.ac.uk (A.I. Murdoch).

0301-9322/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0301-9322(02)00021-6



associated with the presence of fluid–fluid and fluid–solid interfaces. Their behaviour may also be
influenced by the associated three-phase common (also termed ‘contact’) lines (Platikanov et al.,
1980; Miller and Neogi, 1985; Schiegg, 1986; Ivanov et al., 1986). Accordingly, any theory which
is to describe flows at a scale large compared with the structural dimensions of a porous body
(hereafter termed a ‘macroscale’) should take into account the effect of interfaces and common
lines, although these are not explicitly manifest at this scale.
Multiphase systems can be regarded at three distinct scales: the molecular scale, pore scale (also

termed ‘microscale’), and macroscale. For most applications, governing equations at the macro-
scale are needed. There is an extensive literature on the derivation of macroscale balance relations
by averaging microscale equations over so-called Representative Elementary Volumes (REVs: see
Bear, 1972). In turn, microscale balance relations may be obtained by averaging governing
equations at the molecular level. Accordingly, a macroscale description on the basis of molecular
considerations may be obtained via a two-step procedure, which is now described in more detail.
In the two-step approach, a microscale description may be employed on a scale large com-

pared with nearest-neighbour molecular separations, yet small enough for porous structure to
be manifest. From such a perspective the porous body and any bulk phases it contains may be
modelled as three-dimensional continua. Interfaces can be described in terms of two-dimensional
continua (see, for example, Moeckel, 1975) and common lines regarded as one-dimensional
continua (Napolitano, 1979). Since interfaces and common lines actually occupy three-dimen-
sional regions (although, roughly speaking, extremely small in one or two dimensions, respec-
tively), such a continuum description involves selection of model surfaces and curves which lie
within the relevant regions. To these surfaces and curves are attributed fields which satisfy balance
and constitutive relations adequate to describe behaviour (at the scale in question) of material in
the corresponding regions, taking due account of the effects of matter in contiguous regions. It
follows that no fields in this approach are attributed to points in interfacial or three-phase
common regions which do not lie on the model surfaces or curves. Such points form a region in
which there is thus a ‘modelling void’. However, if balance relations and constitutive assumptions
are to be postulated for interfaces and common lines, then it is necessary to be guided by the
extensive literature on interfacial physics (see, for example, Defay et al., 1966; Bikerman, 1970;
Slattery, 1990). Following Gibbs (1876), such literature deals with so-called ‘excess’ quantities
which arise as a consequence of the (formal and physically artificial) extension of bulk fields up
to interfacial model surfaces. Such extension is effected in such a way that the balance relations
satisfied by these fields are preserved. This procedure ensures that there are no points at which
fields are undefined: that is, there is no ‘modelling void’. Such extra notional material behaviour is
compensated by, roughly speaking, subtracting integrated (in a direction normal to the surface)
versions of each balance relation for extended fields from the corresponding surface balance for
the interfacial region (see, for example, Murdoch, 1990). The resulting surface balance relations
involve excess quantities. In this respect it should be noted that ‘surface tension’ is an excess
quantity: (see, for example, Defay et al., 1966, Chapter 1, Section 2). To be consistent, an anal-
ogous procedure should be adopted for common lines but would involve much greater geometric
complexity. Once balance relations for bulk, interfacial, and common line matter have been es-
tablished as described above, these may be integrated over REVs to yield corresponding local
balances for each material system. Of course, the fields which appear in these final balances are
associated with averages taken at the REV scale.
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The two-step procedure suffers from two shortcomings. Firstly, the link between macroscopic
fields and molecular behaviour is not clearly evident. 1 Secondly, the locations of interfacial
surfaces and common lines need to be chosen in a systematic manner. For example, interfacial
surfaces are often selected on the basis of having zero excess mass. In such case there will generally
be non-zero excess momentum and energy. Further, for multiphase interfaces, the excess mass of a
particular phase may be negative, and so create conceptual difficulties. The geometric complexity
increases significantly in the case of common lines.
In this work a single upscaling procedure is adopted which is devoid of the aforemen-

tioned drawbacks: macroscale balance relations are derived directly from molecular dynamics.
The starting point is the identification, instant by instant, of those molecules belonging to each
bulk, interfacial, and common line material system. Balance relations appropriate to each of these
time-dependent systems are then derived. These relations involve fields defined directly in terms of
REV-scale averages of molecular quantities, and full account is taken of molecular migration and
interactions between all systems.
While the two-step approach has been implemented in Hassanizadeh and Gray (1979) and

Gray and Hassanizadeh (1998), the second, single upscaling, approach has not previously been
pursued. It is the purpose of this note to present this second approach, based upon general
methodology developed in Murdoch and Bedeaux (1994) and Murdoch (2000) to understand the
relationship between continuum equations of balance and molecular behaviour, paying due ac-
count to scales of length and time in the averaging procedure. The two approaches are related,
since the starting point of the first (delineation of pore geometry, balance and constitutive rela-
tions) must be consistent with molecular averaging at a scale small compared with pore size.
Accordingly the result of the first approach may be regarded as a consequence of two-fold av-
eraging, starting from a molecular model. The second approach effects a direct single-stage av-
eraging procedure to achieve the same ends and hence avoids difficulties in the first approach
associated with handling excess quantities for surface and common line systems.
It should be noted that although the system here analysed in detail is composed of one solid and

two fluids, the procedure and results are valid for any multiphase system.
Of course, once balance relations have been established using either of the foregoing ap-

proaches, it is necessary to postulate constitutive relations for certain fields, guided by general
aspects of constitutive theory (for example, as in Hassanizadeh and Gray (1990, 1993)). In this
respect the complementary natures of the two approaches may be of assistance. Certainly the
physical interpretations of fields which appear in balance relations are rendered more transparent
as a consequence of their derivations from two different perspectives. This is exemplified by the
discussion in the final section.
In Section 2 bulk, interfacial, and common line systems are delineated, for porous bodies

containing two immiscible liquids, on the basis of molecular criteria. Densities of mass and
momentum are defined in terms of local joint averages, in space (at REV scale) and time, of
molecular quantities. Balances of mass, momentum, and energy are derived in Section 3 for these
time-dependent systems, with all fields being related to molecular considerations. Simplifications

1 This may be an important drawback when considering the effect of surfactants, which can significantly affect

macroscopic flows, yet be present in only very small amounts.
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are indicated in Section 4, motivated by existing theory for single and two-phase flows. Some
constitutive possibilities are discussed. This paper concludes with remarks on the utility and
relevance of a molecular perspective in continuum modelling of flows in porous media, indicating
topics of particular importance that are elucidated by this viewpoint.

2. Basic molecular considerations

2.1. Delineation of bulk, interfacial, and common line systems

Molecules can always be grouped into individual molecular ‘species’. In the context of multi-
phase flow through a porous body, it is necessary not only to distinguish the species of each
molecule, but also the bulk, interfacial, or common line region in which it is to be found at any
given instant. Such time-dependence is mandated by the significant molecular migration that
occurs between the aforementioned regions.
As a simple example, consider two immiscible liquid phases (oil and water, say) within a porous

body. Labelling the liquids ‘O’ and ‘W’, and the solid porous body ‘B’, there will, at any instant,
be bulk O, W and B phases, interfacial O–W, W–B and B–O regions, and three-phase W–O–B
‘common’ regions. In order to be precise in what follows it is necessary to define the associated
material systems. Assuming there are no chemical reactions, the total material systemM (that is,
the total collection of molecules considered) will consist of fixed (that is, time-independent) sets of
O, W and B molecules: MO, MW, and MB, respectively. Thus

M ¼ MO [MW [MB: ð2:1Þ

At any instant s there is a subdivision of each ofMO,MW andMB into four complementary time-
dependent disjoint subsystems. Specifically,

MO ¼ MO
OðsÞ [MW

O ðsÞ [MB
OðsÞ [MWB

O ðsÞ;
MW ¼ MW

WðsÞ [MO
WðsÞ [MB

WðsÞ [MBO
W ðsÞ;

MB ¼ MB
BðsÞ [MO

BðsÞ [MW
B ðsÞ [MOW

B ðsÞ:
ð2:2Þ

Here MW
WðsÞ consists of those W molecules within a distance 2 d of each of which only W mol-

ecules can be found at instant s, MO
WðsÞ is the set of W molecules within a distance d of each of

which at least one O molecule (but no B molecule) is to be found at instant s,MB
WðsÞ is similarly

defined (with the roles of O and B molecules interchanged), andMBO
W ðsÞ is the set of W molecules

2 Here d is the effective range of molecular interactions. Although d may vary from system to system, it is a molecular
length scale which is appropriate for a specific system. Nearest-neighbour separations for bulk phase water molecules

are 2–3 �AA, and d is typically of order 10 �AA ð¼ 10�9 mÞ. For simplicity we take a common, largest value, for all systems
here discussed.
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within a distance d of each of which at least one B and one O molecule can be found at instant s.
MO

OðsÞ; . . . ;MOW
B ðsÞ are similarly defined. Thus 3

IWOðsÞ :¼ MW
O ðsÞ [MO

WðsÞ ð2:3Þ

consists of molecules which, at time s, reside in W–O interfaces but not in W–O–B common lines.
Similarly (omitting s-dependency for brevity),

IOB :¼ MB
O [MO

B and IBW :¼ MB
W [MW

B ð2:4Þ

represent matter in O–B and B–W interfacial regions, respectively. System

TWOB :¼ MOB
W [MBW

O [MWO
B ð2:5Þ

is comprised of those W, O and B molecules which instantaneously constitute W–O–B common
lines. Summarising, the total material system at any instant may be expressed as the union of
seven mutually disjoint, time-dependent, material subsystems:

M ¼ MO
O [MW

W [MB
B [IWO [IOB [IBW [TWOB: ð2:6Þ

Of course, MO
O, M

W
W and MB

B represent the instantaneous O, W and B ‘pure’ bulk phases, re-
spectively, IWO, IOB and IBW the (binary) interfacial systems, andTWOB the (ternary) common
line system.

Remark 1. Delineation of instantaneous molecular populations of liquid–vapour interfacial
systems is more subtle than identifying immiscible liquid–liquid interfacial matter, since the
former may involve just a single molecular species. However, once a criterion is adopted for
characterising interfacial phases the methodology and forms of balance here obtained apply
without modification. For example, for liquid–vapour H2O interfaces a rough criterion would be
to classify a molecule as instantaneously in gaseous, interfacial, or liquid phase according to
whether, within a distance of 3 �AA therefrom, there are, respectively, fewer than two other such
molecules, between two and five such molecules, and six or greater such molecules.

Remark 2. Suppose a third liquid, L say, is present in the porous body, and mixes with neither W
nor O molecules. In such a case there may be subsets of W, O, L and B molecules characterised at
any instant by the property that, within a distance d of each W, O, L and B molecules therein, are
to be found molecules of each of the other three species. Such subsets delineate regions the span of
each of which is of order d. Accordingly, from the macroscopic viewpoint, these regions are
modelled as common points (see Gray and Hassanizadeh, 1998). For brevity and simplicity, sit-
uations involving more than two immiscible liquids are not here discussed. However, the meth-
odology applies directly to material in four-phase common points.

3 Symbol ‘:¼’ is to be read as ‘is defined to be’ or ‘defined to be’.
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2.2. Outline of the averaging procedure

Let S denote one of the seven time-dependent subsets ofM in (2.6). Suppose thatM consists
of N molecules, modelled as a system of point masses Pi ði ¼ 1; 2; . . . ;NÞ. The mass, together with
the location and velocity at instant s, of Pi will be denoted by mi, xiðsÞ and viðsÞ, respectively. For
each Pi, membership or otherwise of SðsÞ at instant s is described in terms of function ei, where

eiðsÞ ¼
1 if Pi 2 SðsÞ at instant s;
0 if Pi 62 SðsÞ at instant s:

�
ð2:7Þ

The total mass and total momentum associated with S at instant s are thus, respectively,

mðsÞ :¼
XN
i¼1

mieiðsÞ and pðsÞ :¼
XN
i¼1

miviðsÞeiðsÞ: ð2:8Þ

Remark 3. For simplicity of notation no distinction has been made between the three time-
independent molecular species MO, MW and MB (see (2.1)). Accordingly there will be molecules
Pi for which ei is always zero. For example, if S is chosen to be IWO then ei will vanish identi-
cally for all Pi 2 MB. The utility of the membership function ei is that in what follows all sums are
taken over the fixed set of molecules which constitute M.

Local spatial densities qw and pw of mass and momentum for S, evaluated at a geometrical
point x and instant s, are defined by

qwðx; sÞ :¼
XN
i¼1

mieiðsÞwðxiðsÞ � xÞ;

pwðx; sÞ :¼
XN
i¼1

miviðsÞeiðsÞwðxiðsÞ � xÞ:
ð2:9Þ

Here w is a weighting-function. That is, w is a real-valued function, defined for all displacements,
which assigns greater emphasis to contributions from molecules near x to those far from x, has
physical dimension L�3, and is normalised; that isZ

all displacements

w ¼ 1: ð2:10Þ

Remark 4. The simplest choice of w is a ‘mollified’ (that is, smoothed) version of ŵw, where for any
displacement d,

ŵwðdÞ ¼
3
4p�3 if jdj < �;
0 if jdjP �:

�
ð2:11Þ

Choice w ¼ ŵw yields qwðx; sÞ as the total mass of all molecules ofSðsÞ at instant s which lie within
a sphere of radius � centred at x, divided by the volume of this sphere. Similarly, pwðx; sÞ is the
momentum density associated with these molecules at instant s. Mollification can be undertaken
on a very short scale compared with �, so that replacing ŵw by its smoothed version does not alter,
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for practical purposes, the interpretations of qw and pw. Averaging over an REV may be ac-
complished by simple generalisation of the foregoing. Let V denote the volume of the REV and
define, for any pair of points x and y, ~wwðy� xÞ to be V �1, or 0, according to whether y lies, or does
not lie, within that REV with centroid at x. Again w may be chosen to be a mollified version of ~ww:
this is discussed in detail in Murdoch and Kubik (1995, Section 2.3). The need for mollification
arises because w will be differentiated in what follows, yet choices ŵw and ~ww in the foregoing are
discontinuous on the surface of the sphere and REV, respectively.

In order to take full account of molecular migration between (time-dependent) material systems
it proves necessary to define continuum field values in terms of space–time averages. Of course,
this accords with the identification of particular field values with measurements: no measurement
is ever truly instantaneous or localised at a geometrical point. The D-time average of a function f of
time at instant t is

fDðtÞ :¼
1

D

Z t

t�D
f ðsÞds: ð2:12Þ

It follows that if f is continuous, then

_ffDðtÞ :¼
d

dt
fDðtÞf g ¼ 1

D
f ðtÞf � f ðt � DÞg: ð2:13Þ

The D-time averaged counterparts of qw and pw are

qw;Dðx; tÞ :¼
1

D

Z t

t�D
qwðx; sÞds ¼ 1

D

XN
i¼1

mi

Z t

t�D
eiðsÞwðxiðsÞ � xÞds ð2:14Þ

and

pw;Dðx; tÞ :¼
1

D

Z t

t�D
pwðx; sÞds ¼ 1

D

XN
i¼1

mi

Z t

t�D
viðsÞeiðsÞwðxiðsÞ � xÞds: ð2:15Þ

Remark 5. The integrands in (2.14) and (2.15) are not continuous, and hence result (2.13) cannot
be invoked in respect of fields qw;D and pw;D. However, for each molecule Pi, an instantaneous
transition between membership of S to non-membership (or vice versa), as described by ei in
(2.7), may be mollified over an arbitrarily small time interval (for definiteness 10�20 s). Accord-
ingly, transitions may be treated in what follows as if instantaneous, yet result (2.13) is applicable
to qw;D and pw;D.

3. Balance relations

3.1. Mass balance

From (2.13) and (2.14)
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oqw;D

ot
ðx; tÞ ¼ 1

D
qwðx; tÞf � qwðx; t � DÞg

¼ 1

D

XN
i¼1

mi eiðtÞwðxiðtÞf � xÞ � eiðt � DÞwðxiðt � DÞ � xÞg: ð3:1Þ

Further, from (2.15),

ðdivpw;DÞðx; tÞ ¼
1

D

XN
i¼1

mi

Z t

t�D
divx viðsÞeiðsÞwðxiðsÞf � xÞgds

¼ 1

D

XN
i¼1

mi

Z t

t�D
viðsÞeiðsÞ � rxwðxiðsÞ � xÞds

¼ � 1
D

XN
i¼1

mi

Z t

t�D
viðsÞeiðsÞ � rwðxiðsÞ � xÞds

¼ � 1
D

XN
i¼1

mi

Z t

t�D
eiðsÞ

d

ds
wðxiðsÞf � xÞgds: ð3:2Þ

Appreciation of the last sum is best obtained by considering some simple possibilities, noting that
Pi may belong to S for only part of the time interval t � D < s < t, if at all. If Pi 2 S at time
t � D, remains therein until s ¼ t1 < t, and does not return before time t, then the contribution to
the last sum in (3.2) reduces to

� 1
D
mi

Z t1

t�D

d

ds
wðxiðsÞf � xÞgds ¼ � 1

D
mi wðxiðt1Þf � xÞ � wðxiðt � DÞ � xÞg: ð3:3Þ

Similarly, if Pi 62 S for t � D < s < t0, and Pi 2 S for t06 s6 t, then the contribution is

� 1
D
mi wðxiðtÞf � xÞ � wðxiðt0Þ � xÞg: ð3:4Þ

More generally, if Pi 2 S only for times

s 2 ti1 ; ti2½ � [ ti3 ; ti4
� �

[ � � � [ ti2r�1 ; ti2r½ �;

where

t � D6 ti1 < ti2 < ti3 < � � � < ti2r 6 t;

then the contribution is

� 1
D
mi wðxiðti2Þ½
�

� xÞ þ wðxiðti4Þ � xÞ þ � � � þ wðxiðti2rÞ � xÞ�
�

� wðxiðti1Þ
��

� xÞ þ wðxiðti3Þ � xÞ þ � � � þ wðxiðti2r�1Þ � xÞ
��
: ð3:5Þ

It follows from (3.2), and consideration of all migratory possibilities such as (3.3)–(3.5), that

1098 A.I. Murdoch, S.M. Hassanizadeh / International Journal of Multiphase Flow 28 (2002) 1091–1123



divpw;D
� 	

ðx; tÞ ¼ � 1
D

XN
i¼1

mieiðtÞwðxiðtÞ
(

� xÞ �
XN
i¼1

mieiðt � DÞwðxiðt � DÞ � xÞ
)

� Goutw;Dðx; tÞ þ Ginw;Dðx; tÞ; ð3:6Þ

where

Goutw;Dðx; tÞ :¼
1

D

XN
i¼1

X
ij

miw xiðtijÞ
�

� x
	

ð3:7Þ

and

Ginw;Dðx; tÞ :¼
1

D

XN
i¼1

X
ik

miw xiðtikÞð � xÞ: ð3:8Þ

In (3.7) the ij sum is taken over all times tij in the interval ðt � D; tÞ at which Pi leavesS, and the ik
sum in (3.8) is taken over all times in ðt � D; tÞ at which Pi joins S. There are no contributions
from particles Pi which do not migrate into or out of S during interval ½t � D; t�. Quantity

Gw;D :¼ Ginw;D � Goutw;D ð3:9Þ

represents the net local rate of mass density increase associated with REVs and time intervals of
duration D. That is, Gw;D is the net local mass supply rate density at the space–time scales corre-
sponding to REV dimensions and D-time intervals.
From (3.1) and (3.6)

oqw;D

ot
þ divpw;D ¼ Gw;D: ð3:10Þ

The appropriate velocity field is

vw;D :¼ pw;D=qw;D; ð3:11Þ

which yields from (3.10) the mass balance for S as

oqw;D

ot
þ divðqw;Dvw;DÞ ¼ Gw;D: ð3:12Þ

Remark 6. Field vw;D is the natural kinematic variable in terms of which the concepts of ‘motion’,
‘deformation’, and ‘material point’ may be derived (see Murdoch, 1998, Section 3.1). This is the
reverse of the usual viewpoint (see, for example, Truesdell and Noll, 1965) in which the primitive
concepts are material point and deformation. Let Bt denote the common spatial domain of qw;D

and pw;D at time t. Then the motion relative to the situation at time t0 is the solution vw;D
0 to the

initial-value problem defined for each X 2 Bt0 by

_vvw;D
0 ðX; tÞ ¼ vw;D vw;D

0 ðX; tÞ; t
� 	

; ð3:13Þ

where

vw;D
0 ðX; t0Þ ¼ X:
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With each X 2 Bt0 may be identified a material point X: vw;D
0 ðX; tÞ is regarded to be the location

of X at time t. Accordingly it is seen that the notion of material point is scale-dependent, and is
a mathematical construct based upon the fundamental physical quantities qw;D and pw;D. Fur-
ther, such notion is independent of whether or not the material system in question is time-
dependent.

Remark 7. Relation (3.10), together with subsequent balance relations for momentum, moment
of momentum, and energy, hold for averages of molecular quantities computed at the arbitrary
length scale (� say) associated with w, and the arbitrary time scale D. Of course, such balances need
to be supplemented by constitutive assumptions which involve relations between � and D – scale
averages: for example, the manner in which force density representing the resistance to flow of one
fluid due to its interaction with the porous body depends upon the velocity of the fluid relative to
the porous body. It is at the stage of making such constitutive assumptions that specific scales
become crucial. While the sine qua non for spatial scales is the assumption of an REV, the time
scale D is not usually discussed. At a fundamental level, D must be large compared with appro-
priate molecular time scales. Small molecules have typical mass centre average speeds of 103 ms�1

(at standard temperature and pressure), with condensed phase separations of order 3 �AA
ð¼ 3� 10�10 mÞ, and the relevant molecular time scale is 3� 10�13 s. Macromolecular liquids have
longer time scales, but the choice D ¼ 10�6 s will in general suffice. From a practical standpoint,
continuum field values must be related to measurement values which are (in the context of de-
terministic modelling) reproducible to within some tolerance of variation. Measurement values
are associated with monitoring the system at specific length and time scales. (No measurement is
either entirely ‘local’ in space or ‘instantaneous’ but has associated scales of length and time.) It
follows that the ultimate criteria for relevant �;D values in any specific context are:

(i) the specific phenomenon/flow in question,
(ii) the length/time scales of the measurements made, and
(iii) the tolerance of variation admitted which results in reproducible behaviour at the scales

of (ii), as evidenced by measurement.

These considerations were discussed in more detail in Section 2.2.1 of Murdoch and Bedeaux
(1996).

Remark 8. In the foregoing discussion of molecular migration, no account was taken of the
material system from or to whichS molecules came or went. For example, ifS is IWO then a W
molecule can enter from MW

W, M
B
W, or TWOB, while an O molecule can enter from MO

O, M
B
O, or

TWOB. Similarly, W or O molecules can leave IWO for these same systems. Taking account of
such detailed book-keeping would seem to be a priori desirable.

Remark 9. In itemising separate contributions to the exchange term Gw;D it should be noted that
certain migrations are highly unlikely. For example, for a W!WOB transition to occur at some
instant, a W molecule must simultaneously ‘encounter’ an O molecule and a B molecule in the
sense of being distant exactly d from each at this instant. In what follows such transitions will be
assumed to yield negligible contributions to migratory quantities. Specifically terms associated
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with W!WOB, WOB!W, B!WOB, WOB! B, O!WOB, WOB! O, BW!WO,
WO! BW, BW! BO, BO! BW transitions will be neglected. The foregoing reasoning was
based solely upon the definitions of the relevant material systems in terms of purely molecular
considerations. While it may be helpful to visualise regions ‘occupied’ by such systems (for ex-
ample, interfacial regions), such a viewpoint corresponds to a continuum description at a scale at
which pore geometry is manifest, and is not adopted here. Indeed, it is the prime objective of this
work to derive balance relations which involve REV-scale field values directly from a molecular
perspective.

Paying attention to Remarks 8 and 9, the local forms of mass balance for the time-dependent
systems considered are, upon suppressing dependence upon w and D for brevity, as follows:

MW
W:

oqW
ot

þ divqWvW ¼ GWO!W þ GBW!W � GW!WO � GW!BW; ð3:14Þ

MO
O:

oqO
ot

þ divqOvO ¼ GWO!O þ GOB!O � GO!WO � GO!OB; ð3:15Þ

MB
B:

oqB
ot

þ divqBvB ¼ GOB!B þ GBW!B � GB!OB � GB!BW; ð3:16Þ

IWO:
oqWO
ot

þ divqWOvWO

¼ GO!WO þ GW!WO þ GWOB!WO � GWO!O � GWO!W � GWO!WOB; ð3:17Þ

IBW:
oqBW
ot

þ divqBWvBW

¼ GB!BW þ GW!BW þ GWOB!BW � GBW!B � GBW!W � GBW!WOB; ð3:18Þ

IOB:
oqOB
ot

þ divqOBvOB

¼ GO!OB þ GB!OB þ GWOB!OB � GOB!O � GOB!B � GOB!WOB; ð3:19Þ

TWOB:
oqWOB
ot

þ divqWOBvWOB

¼ GOB!WOB þ GBW!WOB þ GWO!WOB � GWOB!OB � GWOB!BW � GWOB!WO: ð3:20Þ

Here qW, qO, qB, qWO, qBW, qOB and qWOB denote the mass densities for systems M
W
W, M

O
O, M

B
B,

IWO, IBW, IOB andTWOB, respectively, with corresponding velocity fields written as vW, vO, vB,
vWO, vBW; vOB and vWOB. Term GWO!W denotes the mass supply rate density associated with mi-
gration of W molecules fromIWO intoM

W
W, and �GW!WO the corresponding (negative, of course)

density corresponding to migration of W molecules out ofMW
W into IWO. Similar interpretations

attach to GBW!W, �GW!BW, etc. while GWOB!WO and �GWO!WOB take care of migration of W and
O molecules between TWOB and IWO, etc.
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3.2. Linear momentum balance

In an inertial frame the motion of Pi is governed byXN
‘¼1
‘6¼i

f i‘ þ bi ¼ mi _vvi; ð3:21Þ

where f i‘ denotes the force exerted upon Pi by another point mass P‘, bi represents the resultant
force on Pi due to all agencies other than M (including, of course, the effect of gravitation), and
_vvi :¼ dvi=dt. Multiplication of all terms in (3.21) at time s by eiðsÞwðxiðsÞ � xÞ, and summing over
all particles, yieldXN

i¼1

XN
‘¼1
‘6¼i

f i‘ðsÞeiðsÞwðxiðsÞ � xÞ þ
XN
i¼1

biðsÞeiðsÞwðxiðsÞ � xÞ ¼
XN
i¼1

mieiðsÞwðxiðsÞ � xÞ_vviðsÞ:

ð3:22Þ

The presence of factor eiðsÞ throughout means that (3.22) is a relation pertaining to systemS (see
(2.6)), while common factor wðxiðsÞ � xÞ for each i ¼ 1; 2; . . . ;N indicates the equation involves
only spatial densities localised at the geometrical point x. The separate contributions of S and
non-S molecules to relation (3.22) may be distinguished by decomposition of the first term:XN

i¼1

XN
‘¼1
‘6¼i

f i‘ðsÞeiðsÞwðxiðsÞ � xÞ ¼ f intw ðx; sÞ þ fextw ðx; sÞ; ð3:23Þ

where

f intw ðx; sÞ :¼
XN
i¼1

XN
‘¼1
‘6¼i

f i‘ðsÞeiðsÞe‘ðsÞwðxiðsÞ � xÞ ð3:24Þ

and

fextw ðx; sÞ :¼
XN
i¼1

XN
‘¼1
‘6¼i

f i‘ðsÞeiðsÞð1� e‘ðsÞÞwðxiðsÞ � xÞ: ð3:25Þ

The only non-zero terms in sum (3.24) are those for which both eiðsÞ and e‘ðsÞ equal to 1 (see
(2.6)), so f intw involves only S–S molecular interactions. In (3.25) only terms for which eiðsÞ ¼ 1
and e‘ðsÞ ¼ 0 contribute, whence fextw delivers the effect of non-S molecules upon S molecules.
The D-time average of the left-hand side of (3.22) at time t yields

f intw;Dðx; tÞ þ fextw;Dðx; tÞ þ bw;Dðx; tÞ; ð3:26Þ

where
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f intw;Dðx; tÞ :¼
1

D

Z t

t�D
f intðx; sÞds; fextw;Dðx; tÞ :¼

1

D

Z t

t�D
fextw ðx; sÞds ð3:27Þ

and

bw;Dðx; tÞ :¼
1

D

XN
i¼1

Z t

t�D
biðsÞeiðsÞwðxiðsÞ � xÞds: ð3:28Þ

Remark 10. Force density f intw;Dðx; tÞ is a local space–time average associated with the effect of S
molecules anywhere upon S molecules within that REV centred at x. Pairwise equilibration of
molecular interactions (that is, f i‘ þ f‘i ¼ 0 for any Pi, P‘) implies that this force density is actually
the effect of S molecules outside the REV upon S molecules inside the REV.

From (3.22), expression (3.26) is to be equated with

1

D

XN
i¼1

mi

Z t

tD

eiðsÞwðxiðsÞ � xÞdvi
ds
ds: ð3:29Þ

Now

wðxiðsÞ � xÞ dvi
ds

¼ d

ds
wðxiðsÞf � xÞviðsÞg �

d

ds
wðxiðsÞf � xÞgviðsÞ ð3:30Þ

and

d

ds
wðxiðsÞf � xÞgviðsÞ ¼ ðrwðxiðsÞ � xÞ � viðsÞÞviðsÞ

¼ ðviðsÞ � viðsÞÞrwðxiðsÞ � xÞ
¼ �divx viðsÞf � viðsÞwðxiðsÞ � xÞg: ð3:31Þ

Here the tensor product of two vectors has been introduced: if a; b are vectors then a� b is that
linear transformation which acts upon any vector v to yield vector ðb � vÞa. [In Cartesian tensor
notation ða� bÞij ¼ aibj.] Use has also been made of the identity

divf/Ag ¼ /divAþ Ar/;

where / is a scalar field and A is a linear transformation field: here / ¼ w and A is the position-
independent tensor vi � vi (so divA ¼ 0Þ. From (3.30) and (3.31) expression (3.29) may be written
as

1

D

XN
i¼1

mi

Z t

t�D
eiðsÞ

d

ds
wðxiðsÞf � xÞviðsÞgds þ divB; ð3:32Þ

where

Bðx; tÞ :¼ 1

D

Z t

t�D

XN
i¼1

feiðsÞmiviðsÞ � viðsÞwðxiðsÞ � xÞgds: ð3:33Þ
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Contributions to Bðx; tÞ derive solely from particles located near x at times close to t. In this
respect it proves helpful to introduce the notional diffusive velocity of Pi with respect to location x
and time t as

v̂viðs;x; tÞ :¼ viðsÞ � vw;Dðx; tÞ: ð3:34Þ
Whenever Pi is near to x at a time s close to t, the notional diffusive velocity of Pi at time s
with respect to ðx; tÞ approximates the actual diffusive velocity ~vviðsÞ :¼ viðsÞ � vw;DðxiðsÞ; sÞ of Pi at
time s.
From (2.14), (2.15) and (3.11),

1

D

Z t

t�D

XN
i¼1

eiðsÞmiv̂viðs; x; tÞwðxiðsÞ � xÞds ¼ 0: ð3:35Þ

Accordingly, using (3.34) to express vi in terms of v̂vi and vw;D in the definition (3.33) of B, and
invoking (3.35), it follows that

B ¼ D̂Dw;D þ qw;Dvw;D � vw;D; ð3:36Þ

where the diffusive stress tensor

D̂Dw;Dðx; tÞ :¼
1

D

Z t

t�D

XN
i¼1

eiðsÞmiv̂viðs;x; tÞ � v̂viðs; x; tÞwðxiðsÞ � xÞds: ð3:37Þ

The first expression in (3.32) may be treated as the sum in (3.2): consideration of all migratory
possibilities yields for this expression

1

D

XN
i¼1

mi eiðtÞviðtÞwðxiðtÞf � xÞ � eiðt � DÞviðt � DÞwðxiðt � DÞ � xÞg

þ Poutw;Dðx; tÞ � Pinw;Dðx; tÞ; ð3:38Þ

where

Poutw;Dðx; tÞ :¼
1

D

XN
i¼1

X
ij

miviðtijÞwðxiðtijÞ � xÞ ð3:39Þ

and

Pinw;Dðx; tÞ :¼
1

D

XN
i¼1

X
ik

miviðtikÞwðxiðtikÞ � xÞ: ð3:40Þ

The sums in (3.39) and (3.40) are precisely those sums which appear in (3.7) and (3.8), respec-
tively. Term Poutw;D ðPinw;DÞ represents a local time rate of change of momentum density associated
with molecules leaving (entering) S. The sum in (3.38) is, using (2.13) with f ðsÞ ¼ pwðx; sÞ;
ðopw;D=otÞðx; tÞ (see (2.8)2 and (2.15)). This observation, together with (3.22), (3.26), (3.29), (3.32),
(3.36) and (3.38), yield the local form of linear momentum balance for S as (upon suppressing
suffices w;D and arguments x; t)
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f int þ fext þ Pin � Pout þ b ¼ o

ot
fqvg þ divfD̂Dþ qv� vg: ð3:41Þ

The effectively short-range nature of molecular interactions enables Noll’s Theorem (first intro-
duced by Noll, 1955) to be used to exhibit the existence (and explicit form) of theS–S interaction
stress tensor T�

w;D such that

f intw;D ¼ divT�
w;D: ð3:42Þ

(See Murdoch and Bedeaux, 1994 or Murdoch and Kubik, 1995 for details.) It follows that (3.41)
may be expressed in the form

divTþ fext þ Pin � Pout þ b ¼ o

ot
fqvg þ divfqv� vg; ð3:43Þ

where the S–S stress tensor

T :¼ T� � D̂D: ð3:44Þ
Equivalently, invoking mass balance (3.12),

divTþ fext þ Pþ b ¼ q _vvþ Gv; ð3:45Þ
where the material time derivative

_vv :¼ ov=ot þ ðrvÞv ð3:46Þ
denotes the acceleration field appropriate to system S, and

P :¼ Pin � Pout ð3:47Þ
represents the net momentum density supply rate due to S molecular migration. An alternative
form of (3.45) is

divTþ fext þ Iþ b ¼ q _vv; ð3:48Þ
where

P� Gv ¼: I ¼ Iin � Iout; ð3:49Þ
with (see (3.7), (3.8), (3.39) and (3.40))

Iinðx; tÞ :¼ 1

D

XN
i¼1

X
ik

miv̂viðtik ;x; tÞwðxiðtikÞ � xÞ ð3:50Þ

and

Ioutðx; tÞ :¼ 1

D

XN
i¼1

X
ij

miv̂viðtij ;x; tÞwðxiðtijÞ � xÞ: ð3:51Þ

Remark 11. Fields D̂D, Iin and Iout are defined in terms of molecular notional diffusive velocities.
The actual diffusive velocity of Pi (at REV spatial, and D-time, scales) in the foregoing is
~vvi :¼ viðsÞ � vw;DðxiðsÞ; sÞ, which is, for ðxiðsÞ; sÞ near ðx; tÞ, well-approximated by v̂viðs;x; tÞ. Since
average molecular velocities in solids or fluids are large compared with REV-scale velocities of
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any system here considered, fields D̂D, Iin and Iout are essentially of thermal character. The kinetic
energy

PN
i¼1 eimi~vv

2
i =2 is the heat energy instantaneously possessed by systemS: this is precisely the

kinetic theory of heat (see, for example, Brush, 1986).

Recalling Remarks 8 and 9, details of the separate contributions to fext and P from each system
distinct from S can be made explicit. The balances of linear momentum for the seven systems
considered are, upon indicating such book-keeping, as follows:

MW
W: divTW þ fWOW þ fBWW þ fWOBW þ bW þ PWO!W � PW!WO þ PBW!W � PW!BW

¼ o

ot
fqWvWg þ divfqWvW � vWg; ð3:52Þ

MO
O: divTO þ fWOO þ fOBO þ fWOBO þ bO þ PWO!O � PO!WO þ POB!O � PO!OB

¼ o

ot
fqOvOg þ divfqOvO � vOg; ð3:53Þ

MB
B: divTB þ fOBB þ fBWB þ fWOBB þ bB þ POB!B � PB!OB þ PBW!B � PB!BW

¼ o

ot
fqBvBg þ divfqBvB � vBg; ð3:54Þ

IWO: divTWO þ fWWO þ fOWO þ fBOWO þ fBWWO þ fWOBWO þ bWO þ PO!WO � PWO!O

þ PW!WO � PWO!W þ PWOB!WO � PWO!WOB

¼ o

ot
fqWOvWOg þ divfqWOvWO � vWOg; ð3:55Þ

IBW: divTBW þ fBBW þ fWBW þ fOBBW þ fWOBW þ fWOBBW þ bBW þ PB!BW � PBW!B

þ PW!BW � PBW!W þ PWOB!BW � PBW!WOB

¼ o

ot
fqBWvBWg þ divfqBWvBW � vBWg; ð3:56Þ

IOB: divTOB þ fOOB þ fBOB þ fBWOB þ fWOOB þ fWOBOB þ bOB þ PO!OB � POB!O þ PB!OB

� POB!B þ PWOB!OB � POB!WOB

¼ o

ot
fqOBvOBg þ divfqOBvOB � vOBg; ð3:57Þ

TWOB: divTWOB þ fWWOB þ fOWOB þ fBWOB þ fWOWOB þ fOBWOB þ fBWWOB þ bWOB

þ PWO!WOB � PWOB!WO þ POB!WOB � PWOB!OB þ PBW!WOB � PWOB!BW

¼ o

ot
fqWOBvWOBg þ divfqWOBvWOB � vWOBg: ð3:58Þ

Remark 12. In line with the considerations of Remark 9, terms associated with direct molecular
exchange between bulk phases and common lines, and between different interfacial phases, have
been considered negligible in relations (3.52)–(3.58). However, corresponding interaction terms are
not necessarily negligible. Here the criterion is the range of molecular interactions. In general (see,
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for example, Hirschfelder, 1967) such interactions are effectively small at separations of 10 �AA. This
was the motivation behind choice d � 10 �AA in the definition of the distinct material systems
considered. It follows that force densities which derive from interactions between molecules in
different bulk phases are to be expected to be negligible, since such molecules are by definition at
least a distance d apart. (For example, fOW is the force density associated with the effect on bulk
phase W molecules due to bulk phase O molecules. However, only W molecules are to be found
within a distance d of any bulk phase W molecule, by definition, so that all contributions to fOW
stem from W–O molecular pairs separated by a distance of at least d.) Thus force densities fOW, f

B
W,

fBO, f
W
O ð¼ �fOWÞ, f

W
B ð¼ �fBWÞ and fOB ð¼ �fBOÞ are expected to be negligible. On the other hand

fWOBW is not a priori negligible, but represents a body force density associated with the effect upon
bulk liquid W by liquid W in the common line system TWOB. Similar remarks apply to bulk–
interfacial force densities. For example, a W molecule ofMW

W will be further than distance d from
an O molecule of IWO, and hence density fWOW will derive essentially from W–W interactions, as
also must fWWO ð¼ �fWOW Þ. Further, interface–interface force densities essentially involve only in-
teractions between molecules of the same species. Specifically, fBWWO ð¼ �fWOBWÞderives from W–W
interactions, fOBWO ð¼ �fWOOB Þ from O–O interactions, and fBWOB ð¼ �fOBBWÞ from B–B interactions.
The foregoing observations indicate that in any interfacial balance certain terms can be grouped
together. For example, in (3.55), fWWO þ fBWWO þ PW!WO � PWO!W represents an effective force
density associated solely with W molecules, fOWO þ fBOWO þ PO!WO � PWO!O a density involving

only O molecules, and fWOBWO þ PWOB!WO � PWO!WOB a density involving both W and O molecules.
(The adjective ‘effective’ is employed since the time-averaged momentum exchange terms such as
PW!WO are not strictly force densities.)

Remark 13. The above relations may be summarised by denoting any material system of interest
byS, with corresponding mass density, velocity, stress and body force density qS, vS, TS and bS,
respectively. Then momentum balance for S is

divTS þ
X
S0 6¼S

fS0
S

n
þ PS0!S � PS!S0

o
þ bS ¼ o

ot
fqSvSg þ divfqSvS � vSg: ð3:59Þ

Here the sums are taken over all material systems S0 in M with the exception of S itself, fS0
S

denotes the force density associated with the action of S0 upon S, and PS!S0
(respectively,

PS0!SÞ the momentum density supply rate corresponding to migration of molecules from SðS0Þ
into S0ðSÞ. The alternative form of balance (3.48) is expressible in this format as

divTS þ
X
S0 6¼S

ffS0

S þ IS
0!S � IS!S0g þ bS ¼ qS _vvS: ð3:60Þ

In the same way, mass balance relations (3.14)–(3.20) can be summarised as

oqS

ot
þ divqSvS ¼

X
S0 6¼S

fGS0!S � GS!S0g; ð3:61Þ

where GS0!S (respectively GS!S0
) represents the mass supply rate density associated with mi-

gration from S0ðSÞ into SðS0Þ.
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Of course, as discussed in Remarks 9 and 12, certain terms in the above balances are to be
expected to be negligible.

3.3. Energy balance

Consider the result of scalar multiplication of (3.21) by D�1eiwðxi � xÞvi, integration of the
resulting relation over time interval t � D6 s6 t, and then summation over all molecules Pi 2 M.
The first term may be written as

1

D

XN
i¼1

XN
‘¼1
‘6¼i

Z t

t�D
ff i‘ðsÞeiðsÞe‘ðsÞ þ f i‘ðsÞeiðsÞð1� e‘ðsÞÞg�viðsÞwðxiðsÞ � xÞds: ð3:62Þ

From (3.34) this expression reduces to (see (3.26) and (3.27))

qintw;D

�
þ f intw;D � vw;D þ qextw;D þ fextw;D � vw;D

�
ðx; tÞ; ð3:63Þ

where

qintw;Dðx; tÞ :¼
1

D

XN
i¼1

XN
‘¼1
‘6¼i

Z t

t�D
eiðsÞe‘ðsÞf i‘ðsÞ � v̂viðs;x; tÞwðxiðsÞ � xÞds; ð3:64Þ

and

qextw;D :¼ 1

D

XN
i¼1

XN
‘¼1
‘6¼i

Z t

t�D
eiðsÞð1� e‘ðsÞÞf i‘ðsÞ � v̂viðs;x; tÞwðxiðsÞ � xÞds: ð3:65Þ

Remark 14. Fields qintw;D and qextw;D are of a thermal nature: their definitions involve the diffusive
(‘random’ or ‘thermal’) velocities v̂vi (see Remark 11). Density qintw;D represents a local rate of self-
heating of S molecules while qextw;D denotes a local rate of heating density for S molecules
stemming from interactions with non-S molecules ofM: the latter is thus a conductive heat supply
rate density associated with interactions.

The second term in (3.21) yields

1

D

XN
i¼1

Z t

t�D
eiðsÞbiðsÞ � fvw;Dðx; tÞ þ v̂viðs; x; tÞgwðxiðsÞ � xÞds ¼ ðbw;D � vw;D þ rw;DÞðx; tÞ;

ð3:66Þ
where

rw;Dðx; tÞ :¼
1

D

XN
i¼1

Z t

t�D
eiðsÞbiðsÞ � v̂viðs;x; tÞwðxiðsÞ � xÞ ð3:67Þ

1108 A.I. Murdoch, S.M. Hassanizadeh / International Journal of Multiphase Flow 28 (2002) 1091–1123



represents the density associated with the local rate of heat supply toS molecules due to agencies
outwith systemM (evaluated at ðx; tÞÞ. This term is usually identified with the (external) radiative
heat supply rate density.
The right-hand side of (3.21) yields (via operations similar to those employed in (3.30) and

(3.31))

1

D

XN
i¼1

Z t

t�D
eiðsÞ

d

ds
1

2
miv

2
i ðsÞ

� �
wðxiðsÞ � xÞds ¼ ðAw;D þ Bw;DÞðx; tÞ; ð3:68Þ

where

Aw;Dðx; tÞ :¼
1

D

XN
i¼1

Z t

t�D
eiðsÞ

d

ds
1

2
miv

2
i ðsÞwðxiðsÞ

�
� xÞ

�
ds ð3:69Þ

and

Bw;Dðx; tÞ :¼
1

D

XN
i¼1

Z t

t�D
divx

1

2
mieiðsÞv2i ðsÞwðxiðsÞ

�
� xÞviðsÞ

�
ds: ð3:70Þ

Considering all migratory possibilities (cf. (3.2) and (3.28)),

Aw;Dðx; tÞ ¼
1

D

XN
i¼1

mi

2
feiðtÞv2i ðtÞwðxiðtÞ � xÞ � eiðt � DÞv2i ðt � DÞwðxiðt � DÞ � xÞg

þ 1
D

XN
i¼1

X
ij

1

2
miv

2
i ðtijÞwðxiðtijÞ � xÞ � 1

D

XN
i¼1

X
ik

1

2
miv

2
i ðtikÞwðxiðtikÞ � xÞ; ð3:71Þ

where times tij and tik are precisely those which appear in (3.7), (3.8), (3.39), (3.40), (3.50) and
(3.51). Using decomposition (3.34) and noting result (3.35), the first half of expression (3.71) for
Aw;Dðx; tÞ becomes

o

ot
qw;D hw;D

��
þ 1
2
v2w;D

�
ðx; tÞ

�
: ð3:72Þ

Here

ðqw;Dhw;DÞðx; tÞ :¼
1

D

XN
i¼1

Z t

t�D
eiðsÞ

mi

2
v̂v2i ðs; x; tÞwðxiðsÞ � xÞds ð3:73Þ

is the local heat content density: from (3.37) this is precisely one-half the trace of tensor D̂Dw;Dðx; tÞ.
Decomposition (3.34) yields, for the second half of the expression (3.71) for Aw;Dðx; tÞ,

Koutw;D

�
� K inw;D þ Ioutw;D

�
� Iinw;D

�
� vw;D þ 1

2
Goutw;D

�
� Ginw;D

�
v2w;D

�
ðx; tÞ; ð3:74Þ

where

Koutw;Dðx; tÞ :¼
1

D

XN
i¼1

X
ij

1

2
miv̂v

2
i ðtij ; x; tÞwðxiðtijÞ � xÞ ð3:75Þ
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and

K inw;Dðx; tÞ :¼
1

D

XN
i¼1

X
ik

1

2
miv̂v

2
i ðtik ; x; tÞwðxiðtikÞ � xÞ: ð3:76Þ

Term Koutw;D (respectively K inw;D) represents the local density of the loss (gain) of heat as a conse-
quence of molecular migration out of S (into S).
From (3.71), (3.72) and (3.74), upon suppressing suffices w;D and arguments x; t,

A ¼ o

ot
q h
��

þ 1
2
v2
��

þ Kout � K in þ Iout
�

� Iin
	
� vþ 1

2
ðGout � GinÞv2: ð3:77Þ

For later comparison with (3.45) it should be noted that (see (3.49), (3.47) and (3.9))

I � vþ 1
2
Gv2 ¼ P � v� 1

2
Gv2: ð3:78Þ

Writing (3.70) in the form

Bw;Dðx; tÞ ¼ divx
1

D

XN
i¼1

Z t

t�D

mi

2
eiðsÞwðxiðsÞ

(
� xÞðviðsÞ � viðsÞÞviðsÞds

)
; ð3:79Þ

using (3.34) and (3.35) it follows (upon suppressing suffices and arguments) that

B ¼ div k

�
þ qhvþ D̂Dvþ 1

2
qv2v

�
: ð3:80Þ

Here

kw;Dðx; tÞ :¼
1

D

XN
i¼1

Z t

t�D

mi

2
eiðsÞv̂v2i ðs;x; tÞv̂viðs; x; tÞwðxiðsÞ � xÞds: ð3:81Þ

denotes the diffusive heat flux vector field.
Energy balance, from (3.63), (3.66), (3.68), (3.72), (3.74) and (3.80), takes the form

r þ qint þ qext þ f int
�

þ fext þ bþ Iin � Iout
	
� vþ K in � Kout þ 1

2
ðGin � GoutÞv2

¼ o

ot
q h
��

þ 1
2
v2
��

þ div k

�
þ qhvþ D̂Dvþ 1

2
qv2v

�
: ð3:82Þ

This balance simplifies, upon invoking balances (3.12) and (3.45) of mass and linear momentum,
to

�divkþ r þ qint þ qext þ K in � Kout � D̂D � L ¼ q _hhþ ðGin � GoutÞh: ð3:83Þ
Here

_hh :¼ oh=ot þrh � v ð3:84Þ
denotes the material time derivative of h and

L :¼ rv ð3:85Þ
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represents the velocity gradient. (In Cartesian tensor notation Lij ¼ vi;j:Þ

Remark 15. Noll’s theorem can again be used to show (see Murdoch and Bedeaux, 1994, Section
7, for full details) that there exists an S–S interaction heat flux vector q� such that

qint ¼ �divq� þ qþ; ð3:86Þ

where qþ is the local S–S self-heating density (or net internal radiative heat supply density). This
enables the first three terms in (3.83) to be re-expressed as

r � div qþ qþ; ð3:87Þ

where the S–S heat flux vector

q :¼ q� þ k: ð3:88Þ

Term qþ is usually considered to be negligible and will henceforth be omitted.

Balance (3.83) constitutes an evolution equation for the heat content per unit mass h. The
balance of total energy is obtained from (3.82) using (3.42), (3.44), (3.86) and (3.88). These re-
lations yield

r þ qext þ divfTTv� qg � T� � Lþ K in � Kout þ ffext þ bþ Iin � Ioutg � v

¼ qð _hhþ _bv2v2bv2v2=2Þ þ ðGin � GoutÞh: ð3:89Þ
Let b be the solution (see Remark 17 below) to

q _bb þ Gb ¼ T� � L; ð3:90Þ

and define

K :¼ K in � Kout þ ðIin � IoutÞ � vþ ðGin � GoutÞv2=2: ð3:91Þ

Then (3.89) becomes

divfTTv� qg þ r þ qext þKþ ffext þ bg � v ¼ qð _eeþ _bv2v2bv2v2=2þ ðGin � GoutÞðeþ v2=2ÞÞ; ð3:92Þ

where

e :¼ b þ h ð3:93Þ
denotes the total internal energy density per unit mass and a superposed dot ‘�’ denotes the
material time derivative (see (3.46) and (3.89)). Term b represents the interaction energy density per
unit mass.

Remark 16. From definitions (3.7), (3.8), (3.50), (3.51), (3.75), (3.76) and (3.91)

Kðx; tÞ ¼ 1

D

XN
i¼1

X
ik

1

2
miv

2
i ðtikÞwðxiðtikÞ

(
� xÞ �

X
ij

1

2
miv

2
1ðtijÞwðxiðtijÞ � xÞ

)
: ð3:94Þ
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ThusK represents the spatial density for the net supply of molecular kinetic energy to S due to
migration betweenS and all the other systems which constituteM (see (2.5)). Relation (3.91) is a
decomposition of this kinetic energy supply into heat supply ðKin � KoutÞ, macroscopic kinetic
energy supply ððGin � GoutÞv2=2Þ, and the thermo-mechanical hybrid ðIin � IoutÞ � v.

Remark 17. Energy balance (3.92) delineates the time evolution of energy, and is to be compared
with momentum and mass balances (3.45) and (3.12), respectively. The right-hand sides of these
evolution equations are the appropriate generalisations of those for time-independent systems
ðG ¼ 0Þ. This can be seen by noting that

q _ff þ Gf ¼ o

ot
fqf g þ divfqf vg ð3:95Þ

for any scalar field f. (The relation also holds for any vector field f if qf v is interpreted to be
qf � v.) Accordingly, if R is a regular region thenZ

R

ðq _ff þ Gf Þ ¼ o

ot

Z
R

qf
� �

þ
Z
R

qf v � n: ð3:96Þ

The foregoing observation motivated inclusion of term Gb in the differential equation (3.90)
defining the interaction energy density (per unit mass) b. (For discussion of (3.90) see Murdoch
and Soliman, 1999, Remark 10.)

Employing the notation of Remark 13, balance of energy (3.92) may be written as

divfTTSvS � qSg þ rS þ bS � vS þ
X
S0 6¼S

qS
0

S

n
þKS0!S �KS!S0

þ ðfS0

S þ IS
0!S � IS!S0 Þ � vS

o
¼ qS _eeS þ _cv2Sv2Scv2Sv2S=2� �

þ
X
S0 6¼S

GS0!S � GS!S0
n o

eS: ð3:97Þ

Here qS
0

S and ðKS0!S �KS!S0 Þ represent conductive heat supply rate densities fromS0 intoS,
associated with the work done by interactions in thermal motion and diffusion of thermal kinetic
energy, respectively.

Remark 18. Although the considerations of this section concerned the seven time-dependent
material systems associated with two immiscible liquids within a porous body, balances (3.60),
(3.61) and (3.97) are general. That is, once material systems of interest in multiphase flows in a
porous body are identified, then the derivations here developed give rise to these forms of balance.
Recall Remark 1 in respect of liquid–vapour and gaseous phases.
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4. Discussion: constitutive considerations

4.1. General remarks

Multiphase flows in porous media give rise to a wide variety of observed behaviour (see, for
example, the comprehensive survey in Nitsche and Brenner, 1989). Since full account of molecular
behaviour has been taken in the foregoing, the balance relations here derived are relevant to all
physical situations in which molecules preserve their integrity. 4 However, in formulating a
continuum theory which adequately predicts (and is capable of furnishing quantitative under-
standing of) specific behaviour, there are two essential steps to be taken.

Step 1. Having identified all molecular species of significance, appropriate material systems
must be selected. Once this is done, the forms of the balance relations for each system are those
established here, and the fields involved are defined precisely in terms of space–time averages of
molecular quantities.

Step 2. In order to obtain a system of (coupled, partial differential) equations which suffices to
determine the time evolution of mass density, displacement, and temperature fields for each
material system, it is necessary to supplement balance relations with appropriate constitutive
assumptions. While balance relations are general in nature (for example, in Section 3 ‘W’ and ‘O’
could denote any pair of immiscible liquids), constitutive relations introduce specific character-
istics of system behaviour at length-time scales of interest. Of course, it is these scales which are
adopted in defining all fields which appear in the balance relations.
In introducing a molecular perspective, the approach here adopted complements existing

continuum modelling of multiphase flows. Such modelling usually involves continuum theories of
mixtures, or REV averaging of continuum relations postulated to hold at the scale of pores. When
such theories embody a full thermodynamic exposition, constitutive relations may be simplified
using the Coleman and Noll method of exploiting the entropy inequality. (See, for example, the
mixture-theoretic approach of Bowen, 1982, and average-continuum discussions of Hassanizadeh
and Gray, 1980, 1990.) Aspects of flows for which a molecular viewpoint is envisaged as being of
particular value are indicated in the final Section 4.4. In the following two sections somewhat
simplistic illustrations are given of how existing theories may be viewed as consequences of Steps 1
and 2. In future work we hope to exploit the greater insight provided by the molecular approach,
particularly the role played by surfactants.

4.2. Flow in a porous solid saturated with a single liquid

In the case of a porous solid body saturated with a single liquid, explicit account of the solid–
liquid interface may be obviated by considering that time-dependent material system, MBþ say,
which, at any instant, consists of the fixed set of solid body molecules together with those liquid
molecules instantaneously belonging to the solid–liquid interfacial system. Using the notation of

4 Molecular ionisation modifies the nature of pairwise interactions (which become long range). This is relevant when

treating chemical reactions and solutions which usually involve dissociation of molecules into ions. Such considerations

are outwith this work, but can be accommodated within the corpuscular approach adopted here.
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the previous sections, ‘W’ denotes liquid, and ‘B’ solid, matter. In the absence of ‘O’ material, the
counterparts of relations (2.2) are

MBþðsÞ :¼ MB
BðsÞ [MB

WðsÞ [MW
B ðsÞ ¼ MB

BðsÞ [IBWðsÞ ð4:1Þ

and

MWðsÞ :¼ MW
WðsÞ:

Linear momentum balance for MBþ is obtained by summing (3.54) and (3.56). This yields

divTBþ þ fWBþ þ bBþ ¼ o

ot
qBþvBþf g þ div qBþvBþf � vBþg; ð4:2Þ

where

qBþ :¼ qB þ qBW; vBþ :¼ 1

qBþ
ðqBvB þ qBWvBWÞ; ð4:3Þ

TBþ :¼ TB þ TBW � qBqBW
ðqB þ qBWÞ

ðvBW � vBÞ � ðvBW � vBÞ; ð4:4Þ

fWBþ :¼ fWBW þ PW!BW � PBW!W and bBþ :¼ bB þ bBW: ð4:5Þ

The last term in (4.4) is expected to be small, and (4.5)1 is a consequence of the vanishing of
fBWB þ fBBW (via satisfaction of Newton’s third law by molecular interactions).
Linear momentum balance for MW is the relevant version of (3.52), namely

divTW þ fB
þ

W þ bW ¼ o

ot
fqWvWg þ divfqWvW � vWg; ð4:6Þ

where

fB
þ

W :¼ fBWW þ PBW!W � PW!BW ¼ �fWBþ : ð4:7Þ

The effect of the porous body on momentum transport of bulk liquid is thus seen to derive
entirely from molecules in the W–B interfacial system.
If the only external body forces are due to gravity then body force densities bBþ and bW are

readily identified as qBþg and qWg, respectively, where g denotes gravitational acceleration.
At this point it is necessary to postulate constitutive relations for TBþ , f

Bþ

W ð¼ �fWBþÞ, and TW.
To this end insight may be gained by adopting a viewpoint appropriate to length scales large
compared with the molecular perspective, yet small enough for pore features to be evident. At
such scales a continuum approach is possible for both fluid phases and the porous body. Of
course, in this approach fields associated with fluid phases are only defined in the pore space, and
porous body fields make sense only in the region occupied by the body at the scale chosen. 5 (This
is in contrast to REV-scale fields which appear in the balance relations derived in Section 3. For
example, qS, qW and qO may all be positive at a given point x: this would be the case were S, W

5 It is to be noted that the boundary of the porous body (and hence the pore space therein) depends upon the precise

scale adopted. See Murdoch, 1995.
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and O molecules to be found within that REV centred at x – in particular, were a common line to
be found within this REV.)
The remaining part of this subsection is devoted to the case of saturation of pore space by an

incompressibleNewtonian fluid undergoing steady creeping flow through a rigid porous body, since
a number of precise observations can be made. In such context the relevant form of (4.6) may be
compared with the relation obtained by spatial averaging of Navier–Stokes flow within pore space
at the REV scale. To this end, and consistent with the foregoing weighting function approach, the
(REV scale) average hf i of any field f which appears in the Navier–Stokes equation is defined by

hf iðxÞ :¼
Z
E

f ðyÞwðy� xÞdy: ð4:8Þ

Integration is taken over all Euclidean space E, w denotes the (REV scale) weighting function
introduced in (2.9), and f is taken to be zero at points unoccupied by fluid.
The relevant form of the Navier–Stokes equation is

�rP þ l
qiW

Dpþ qiWg ¼ 0; ð4:9Þ

where P denotes pressure, l viscosity, qiW density (constant) and p denotes momentum density. If
relation (4.9) is evaluated at point y, each term is multiplied by wðy� xÞ, and integration is ef-
fected over E, then use of the non-slip condition on pore walls and the divergence theorem (see
Murdoch and Soliman, 1999, Section 5(a)) yield

�rfhP ig þ l
qiW

Dfhpig þ f̂fW þ l~ffW þ qiWmg ¼ 0: ð4:10Þ

Here m denotes porosity and (suppressing time dependence),

f̂fWðxÞ :¼
Z

R
�P ðyÞnðyÞwðy� xÞdAy;

~ffWðxÞ :¼
1

qiW

Z
R

ðrpÞðyÞð ÞnðyÞwðy� xÞdAy;
ð4:11Þ

where R denotes all pore boundaries and n is that unit normal field on R directed into the porous
body. The factor w in the integrand results in contributions only from pore boundaries within that
REV centred at x (see Remark 4). Comparison of (4.10) with the form of (4.6) appropriate to
steady creeping flow yields the identifications

divTW þ fB
þ

W $ �rfhP ig þ l
qiW

Dfhpig þ f̂fW þ l~ffW;

bW $ qiWmg:
ð4:12Þ

Here symbol ‘$’ is employed as shorthand for ‘is to be identified with’.
If vW denotes the characteristic function of pore space P (so vWðxÞ ¼ 1 if x 2 P, vWðxÞ ¼ 0 if

x 62 P), then (op. cit. (2.25))

m ¼ hvWi and rm ¼ �
Z

R
nwdA: ð4:13Þ
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If the pore pressure is constant, P0 say, then from (4.11)1 and (4.13)

f̂fW ¼ P0rm ¼ �PPrm; ð4:14Þ
where

�PP :¼ m�1hPi ð4:15Þ
denotes the intrinsic average pressure. For more general situations, relation (4.14) motivates
writing (4.11)1 as

f̂fWðxÞ ¼ �PP ðxÞrmðxÞ þ FWðxÞ; ð4:16Þ
where

FWðxÞ :¼ �
Z

R
ðP ðyÞ � �PPðxÞÞnðyÞwðy� xÞdAy: ð4:17Þ

Incompressibility implies

div p ¼ 0 ð4:18Þ
and hence (non-trivially: see argument in op. cit. between (3.13) and (3.15))

divfhpig ¼ 0: ð4:19Þ
In view of (4.15), (4.16) and (4.19), identification (4.12)1 is compatible with identifications

TW $ ��PPm1þ l
qiW

rfhpig
n

þ ðrfhpigÞT
o
;

fB
þ

W $ �PPrm þ FW þ l~ffW;
ð4:20Þ

upon noting

div ðrfhpigÞT
n o

¼ rfdivhpig ¼ 0: ð4:21Þ

In terms of the natural identifications

qW $ hqi ¼ hqiWvWi ¼ qiWm;

qWvW $ hpi;
ð4:22Þ

1

qiW
hpi $ mvW ¼: Q; ð4:23Þ

where Q is the volumetric flux vector. Identification (4.20) thus may be written as

TW $ ��PPm1þ lfrQþ ðrQÞTg: ð4:24Þ
The remaining term ~ffW in (4.10) introduces the concept of permeability. If the porous body is
isotropic, the assumption that the resistive force density represented by l~ffW depends linearly upon
relative velocity yields

~ffW ¼ � 1
k
ðvW � vBÞ ð4:25Þ

for some constant k > 0. Eq. (4.10) may now be written, using (4.16), (4.23) and (4.25), as
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�mr�PP þ lDQþ FW � l
k
ðvW � vBÞ þ qiWmg ¼ 0: ð4:26Þ

Remark 19. It is possible to obtain an explicit expression for FW in a stationary body in the
absence of flow. In such case the pore space pressure is hydrostatic: that is,

PðyÞ ¼ P0 � qiWgðy� x0Þ � e3; ð4:27Þ
with P0 :¼ P ðx0Þ, where x0 is some fixed point in pore space and e3 is a unit vector directed
vertically up. Then for any point x (not necessarily in pore space),

hP iðxÞ :¼
Z
pore space

PðyÞwðy� xÞdy ¼
Z
pore space

fP0 � qiWgðy� x0Þ � e3gwðy� xÞdy

¼ P0mðxÞ � qiWg ð�xxðxÞ
�

� x0Þ � e3
�
mðxÞ; ð4:28Þ

where �xxðxÞ denotes the centroid of the pore space which lies within that REV with centroid at x.
(Here w denotes the weighting function associated with REVs: see Remark 4.)
Accordingly, from (4.15),

�PPðxÞ ¼ P0 � qiWgð�xxðxÞ � x0Þ � e3: ð4:29Þ
It follows that

r�PP ¼ �qiWg r�xx3; ð4:30Þ
where �xx3ðxÞ denotes the height of �xxðxÞ above some fixed horizontal plane. Writing

hðxÞ :¼ �xx3ðxÞ � x3 ð4:31Þ
(so that hðxÞ is the height of the centroid of the pore space within an REV centred at x above the
centroid of this REV, namely x),

r�PP ¼ �qiWgðrhþ e3Þ: ð4:32Þ
From (4.26) and (4.32), noting Q ¼ vW ¼ vS ¼ 0,

FW ¼ �qiWmgrh: ð4:33Þ
Thus FW vanishes if rh ¼ 0. In particular this holds when the centroid of pore space within an
REV coincides with the REV centroid. More generally FW is negligible if, within any REV, the
spatial pressure fluctuation PðyÞ � �PP ðxÞ is not spatially correlated with pore boundary orienta-
tion, as follows immediately from (4.17). Were a flow to yield

FWðxÞ ¼ �
Z

R
aðxÞ � ðy� xÞnðyÞwðy� xÞdAy ð4:34Þ

for some vector aðxÞ (a much weaker assumption than requiring P ðyÞ � �PPðxÞ to equal
aðxÞ � ðy� xÞ pointwise), then, since it may be shown thatZ

R
ðy� xÞ � nðyÞwðy� xÞdAy ¼ rrm; ð4:35Þ

we should have, using the symmetry of the linear transformation field rrm,
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FW ¼ ðrrmÞa: ð4:36Þ

While the above comments do not prove FW is negligible they do suggest it is linked with highly
inhomogeneous porosity. Further, as far as we are aware, there does not appear to be experi-
mental evidence for holding on to this term: its neglect in (4.26) yields the Brinkman equation and
thence, provided DQ is negligible, the Darcy-type relation

�mr�PP þ qiWmg ¼ l
k
vW ð4:37Þ

in an inertial frame in which the porous body is stationary.

Remark 20. For anisotropic bodies (4.25) takes the form

~ffW ¼ �K�1ðvW � vBÞ; ð4:38Þ

where K denotes the permeability tensor. The counterpart of (4.37) (in which K ¼ k1Þ is ac-
cordingly

�mr�PP þ qiWmg ¼ lK�1vW: ð4:39Þ

Both (4.37) and (4.39) correspond to a simplified version of (4.20)1, namely

TW $ �m�PP1: ð4:40Þ

In view of the foregoing it would appear to be unnecessary, at least for steady creeping flows in
porous bodies saturated with incompressible liquid, to go into the greater complexity of taking
explicit account of the BW interfacial system, since the Brinkman equation and its Darcy-type
simplification seem to be adequate in practice.

Remark 21. The definition of permeability tensor varies in the literature. That resulting in (4.39)
was employed in Hassanizadeh and Gray (1980). Whitaker (1986a) wrote (4.39) as

�r�PP þ qiWg ¼ lK̂K�1Q ð4:41Þ

(cf. op. cit., Eq. (3.38) in the case of constant porosity) while Murdoch and Soliman (1999) wrote
(4.38) as

~ffW ¼ �m~KK�1ðvW � vBÞ: ð4:42Þ

Clearly these permeability tensors are related by

m�1K̂K ¼ ~KK ¼ mK: ð4:43Þ

Remark 22. Based upon thermodynamic considerations Hassanizadeh and Gray (1980) has ar-
gued that more generally

TW $ �mf�PP � kdiv vWg1þ mlfrvW þ ðrvWÞTg: ð4:44Þ

This coincides with (4.24) when porosity is constant and the liquid incompressible.
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4.3. Flows involving two immiscible liquid phases which together saturate a porous solid

Consider the flow of two immiscible liquids (materials ‘O’ and ‘W’) through a body which they
jointly saturate. As in the previous section, it is possible to avoid explicit account of all interfacial
systems. This is accomplished by defining

MW�ðsÞ :¼ MW � ðIBW [TWOBÞ \MW; ð4:45Þ
MO�ðsÞ :¼ MO � ðIBO [TWOBÞ \MO; ð4:46Þ

and

MBþþðsÞ :¼ MB [IBW [IBO [TWOB: ð4:47Þ
Thus, at any instant s, MW�ðsÞ consists of all W molecules except those which are in the W–B
interfacial, or W–O–B common line, systems. In particular, this system includes all those W
molecules in the W–O interfacial system. System MO�ðsÞ is similarly defined, and MBþþðsÞ con-
sists of all B molecules together with all W and O molecules which at instant s lie in an interface
including B molecules or in the W–O–B common line system.
Linear momentum balances for the three systems take the forms given by (3.59), namely

divTW� þ FO
�

W� þ FB
þþ

W� þ bW� ¼ o

ot
fqW�vW�g þ divfqW�vW� � vW�g; ð4:48Þ

divTO� þ FW
�

O� þ FB
þþ

O� þ bO� ¼ o

ot
fqO�vO�g þ divfqO�vO� � vO�g ð4:49Þ

and

divTBþþ þ FW
�

Bþþ þ FO
�

Bþþ þ bBþþ ¼ o

ot
fqBþþvBþþg þ divfqBþþvBþþ � vBþþg: ð4:50Þ

Here, noting there is no molecular exchange between MW� and MO� ,

FO
�

W� :¼ fO
�

W� and FB
þþ

W� :¼ fB
þþ

W� þ PB
þþ!W� � PW

�!Bþþ
: ð4:51Þ

Similarly,

FW
�

O� :¼ fW
�

O� ð¼ �FO
�

W�Þ and FB
þþ

O� :¼ fB
þþ

O� þ PB
þþ!O� � PO

�!Bþþ
: ð4:52Þ

The molecular exchange contributions to (4.51)2 derive from migration of ‘W’ molecules between
W� and Bþþ, and similarly for ‘O’ molecules in (4.52)2, between MO� and MBþþ . Force density
FO

�

W� represents the effect of bulk and W–O interfacial ‘O’ molecules on bulk and W–O interfacial
‘W’ molecules (and similarly for FW

�

O� ¼ �FO
�

W�), while FB
þþ

W� ðFBþþ

O� Þ denotes the effective force
density which expresses the resistance to the flow of W� ðO�Þ material due to the porous body
boundary and the interfaces and common line systems located at this boundary. Of course, in
(4.50),

FW
�

Bþþ ¼ �FB
þþ

W� and FO
�

Bþþ ¼ �FB
þþ

O� : ð4:53Þ
If mW and mO denote the volume fractions occupied by the two liquids then saturation implies

that the porosity

m ¼ mW þ mO: ð4:54Þ
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Body force densities bW and bO are readily identified as

bW ¼ qiWmWg and bO ¼ qiOmOg; ð4:55Þ
where qiW and qiO denote the intrinsic mass densities of liquids ‘W’ and ‘O’.
Whitaker (1986b) argued that the ‘‘equations of motion’’ for two-phase fluid flow (through a

stationary body in an inertial frame) should take the form (op. cit., Eqs. (1.1) and (1.2))

hvbi ¼ � K̂Kb

lb

fr�PPb � qbgg þ K̂Kbchvci ð4:56Þ

and

hvci ¼ � K̂Kc

lc

fr�PPc � qcgg þ K̂Kcbhvbi: ð4:57Þ

Here b and c label the two fluid phases, vb and vc (qb and qc) the corresponding velocities (mass
densities) at sub-pore scale, lb and lc the viscosities, and K̂Kc and K̂Kb the permeability tensors (see
Remark 22). Tensors K̂Kbc and K̂Kcb represent the ‘‘viscous drag that exists between the b-phase and
c-phase’’. In the event that the fluids are incompressible liquids, which together saturate the
porous solid, then Eqs. (4.56) and (4.57) correspond to relations (4.49) and (4.50) in the case of
steady, creeping flow, where

TW� :¼ �mW�PPW1 ð4:58Þ
and

FB
þþ

W� þ FO
�

W� :¼ �PPWrmW � lWmWK̂K
�1
WQW þ lWmWK̂K

�1
W K̂KWOQO; ð4:59Þ

together with

TO� :¼ �mO�PPO1 ð4:60Þ
and

FB
þþ

O� þ FW
�

O� :¼ �PPOrmO � lOmOK̂K
�1
O QO þ lOmOK̂K

�1
O K̂KWOQW: ð4:61Þ

Of course, we have here taken phases ‘b’ and ‘c’ to be liquids ‘W’ and ‘O’, mW and mO denote the
volume occupation fractions (see (4.54)), and QO and QW represent the appropriate volumetric
flux vectors.

4.4. Concluding remarks

Remark 23. The molecular viewpoint here adopted enables clear physical identifications and
interpretations to be made in respect of all terms which appear in balances of mass, linear mo-
mentum, and energy. Attention has been drawn to the differing possibilities in selecting relevant
material systems. For example, in Section 4.3 it was suggested that, in the case of two immiscible
liquids saturating a porous body, liquid molecules near the solid be grouped together with solid
molecules: the alternatives would have been either to treat these as liquid–solid interfacial or
common line matter, or not to distinguish them from other liquid molecules of the same type.
Each of the three foregoing possible selections of material systems yield the same forms of balance
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relations for those systems which include bulk liquid and solid phases. However, the terms in-
volved have different interpretations in each case. Here it is made clear how a given choice
mandates self-consistent physical interpretations of these terms, and accordingly aids formulation
of constitutive relations. Further, contributions to momentum and energy transport associated
with molecular diffusion are not immediately evident from a continuum perspective, 6 nor are
those contributions which originate in mass transfer between distinct material systems. The
corpuscular approach has previously rendered transparent the interpretation of partial stresses in
mixture theory (Morro and Murdoch, 1986) which had been incorrectly given by Truesdell and
Toupin (1960), and Bowen (1976), and shown to lead to a paradox by Gurtin et al. (1973).

Remark 24. Flows in porous bodies are sensitive to surfactant material which, although present in
only small amounts, significantly changes interfacial tensions. The extensive literature on surf-
actant science includes much work that adopts a molecular (or ionic) perspective. Thus a cor-
puscular approach of the kind here outlined helps to bridge the gap between highly detailed
knowledge concerning the microscopic behaviour associated with surfactants and the macroscopic
consequences of this behaviour. In this respect surfactants may be considered to constitute distinct
material systems, or to form (for example) subsets of interfacial, or common line, systems.

Remark 25. In deriving balance relations no assumptions have been made concerning the spatial
distributions of material systems. Thus these relations are valid for all such distributions. In
particular, they apply to flows of two immiscible liquids in which there is any amount of pore-
scale ‘fingering’, or any distribution of ‘pockets’ of one liquid left behind when much of this liquid
has been displaced by the other liquid. The extent of such mixing is revealed by the relevant
densities, qO and qW, say. Regions

RWðtÞ :¼ fx : qWðx; tÞ > 0g;
ROðtÞ :¼ fx : qOðx; tÞ > 0g

ð4:62Þ

are those considered to be ‘occupied’ (at REV scale) by liquid ‘W’ and ‘O’, respectively, at time t.
Region

RMðtÞ :¼ RWðtÞ \ROðtÞ ð4:63Þ

is that in which (at the REV averaging scale) both liquids are to be found. If RMðtÞ is locally ‘thin’
in one direction then it may be modelled as an (REV-scale) W–O interfacial surface, IMðtÞ.
Although this is not a situation which usually persists in time (RMðtÞ will in general thicken as time
evolves), if liquid ‘O’ is being displaced by liquid ‘W’ then the boundary oRMðtÞ of RMðtÞ will in
general contain two disjoint components, oRWM ðtÞ and oROMðtÞ, which separate RMðtÞ from the re-
gions in which, respectively, qWð�; tÞ and qOð�; tÞ vanish. Said differently, oROMðtÞ (oRWM ðtÞ) is the
boundary at time t between the region (at REV scale) jointly occupied by ‘O’ and ‘W’ and the
region occupied only by ‘W’ (‘O’). Roughly speaking, the ‘thickness’ ofRMðtÞ is the ‘separation’ of
surfaces oROMðtÞ and oRWM ðtÞ. From the definitions of RW, RO, qW and qO, the minimum thickness

6 For example, while any stress tensor in continuum mechanics is regarded as a single entity, the corpuscular

viewpoint clearly reveals this tensor to consist of distinct contributions from both molecular interactions and diffusion.
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of RMðtÞ is the scale of the REV averaging employed. Analysis of behaviour near oRO
MðtÞ or

oRW
M ðtÞmay be helped by considering moment of mass balances (see Murdoch and Bedeaux, 1994,

Section 5: specifically Eq. (5.17) and Remark 3). Moment of mass balance for a material systemS
delineates the time evolution of the displacement dS from an REV centroid (geometric centre) of
the mass centre ofSmaterial within the REV. While dS is small (0 < jdSj < e, where e is the REV
scale), as a boundary such as oROMðtÞ is crossed jdSj changes by an amount of order e over a
distance of 2e. Thus the spatial gradient rdS becomes significant. In such considerations of in-
homogeneity within REVs, via REV-scale molecular averaging, it is also instructive to consider
the corresponding (tensor-valued) moment of momentum balance (also discussed in op. cit.
Section 5). This remark has been included to draw further attention to the utility of corpuscular
considerations (which serve to establish balances of moments of mass and momentum with precise
physical interpretations of all fields involved), here indicating its role in describing the evolution of
the boundary which represents the limit of penetration/displacement of one liquid by another.

Remark 26. The averaging procedure here presented avoids the introduction of excess quantities
for interfaces and common lines. Excess quantities are not defined unambiguously: their values
depend on the choice of surfaces which model interfacial locations.
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